Skip Navigation
Skip to contents

Endocrinol Metab : Endocrinology and Metabolism

clarivate
OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "Megan C. Moorer"
Filter
Filter
Article type
Keywords
Publication year
Authors
Review Article
Bone Metabolism
Regulation of Osteoblast Metabolism by Wnt Signaling
Megan C. Moorer, Ryan C. Riddle
Endocrinol Metab. 2018;33(3):318-330.   Published online August 14, 2018
DOI: https://doi.org/10.3803/EnM.2018.33.3.318
  • 6,420 View
  • 118 Download
  • 39 Web of Science
  • 38 Crossref
AbstractAbstract PDFPubReader   ePub   

Wnt/β-catenin signaling plays a critical role in the achievement of peak bone mass, affecting the commitment of mesenchymal progenitors to the osteoblast lineage and the anabolic capacity of osteoblasts depositing bone matrix. Recent studies suggest that this evolutionarily-conserved, developmental pathway exerts its anabolic effects in part by coordinating osteoblast activity with intermediary metabolism. These findings are compatible with the cloning of the gene encoding the low-density lipoprotein related receptor-5 (LRP5) Wnt co-receptor from a diabetes-susceptibility locus and the now well-established linkage between Wnt signaling and metabolism. In this article, we provide an overview of the role of Wnt signaling in whole-body metabolism and review the literature regarding the impact of Wnt signaling on the osteoblast's utilization of three different energy sources: fatty acids, glucose, and glutamine. Special attention is devoted to the net effect of nutrient utilization and the mode of regulation by Wnt signaling. Mechanistic studies indicate that the utilization of each substrate is governed by a unique mechanism of control with β-catenin-dependent signaling regulating fatty acid β-oxidation, while glucose and glutamine utilization are β-catenin-independent and downstream of mammalian target of rapamycin complex 2 (mTORC2) and mammalian target of rapamycin complex 1 (mTORC1) activation, respectively. The emergence of these data has provided a new context for the mechanisms by which Wnt signaling influences bone development.

Citations

Citations to this article as recorded by  
  • Aseptic loosening around total joint replacement in humans is regulated by miR-1246 and miR-6089 via the Wnt signalling pathway
    Yi Deng, Kate Phillips, Zhi-Ping Feng, Paul N. Smith, Rachel W. Li
    Journal of Orthopaedic Surgery and Research.2024;[Epub]     CrossRef
  • Cardamonin inhibits osteogenic differentiation by downregulating Wnt/beta‐catenin signaling and alleviates subchondral osteosclerosis in osteoarthritic mice
    Fanding Meng, Pengchong Zhu, Xiaoli Ren, Limei Wang, Dong Ding, Jiangbo Yan, Ying Zhang, Shang‐You Yang, Bin Ning
    Journal of Orthopaedic Research.2024;[Epub]     CrossRef
  • Common Regulators of Lipid Metabolism and Bone Marrow Adiposity in Postmenopausal Women
    Dae-Yong Kim, Seong-Hee Ko
    Pharmaceuticals.2023; 16(2): 322.     CrossRef
  • Novel mutation in LRP5 gene cause rare osteosclerosis: cases studies and literature review
    Dichen Zhao, Lei Sun, Wenbin Zheng, Jing Hu, Bingna Zhou, Ou Wang, Yan Jiang, Weibo Xia, Xiaoping Xing, Mei Li
    Molecular Genetics and Genomics.2023; 298(3): 683.     CrossRef
  • RUNX Family as a Promising Biomarker and a Therapeutic Target in Bone Cancers: A Review on Its Molecular Mechanism(s) behind Tumorigenesis
    Selvaraj Vimalraj, Saravanan Sekaran
    Cancers.2023; 15(12): 3247.     CrossRef
  • FGF19 protects against obesity-induced bone loss by promoting osteogenic differentiation
    Ai Guo, Kai Li, Hong-Chuan Tian, Bai-Long Tao, Qian Xiao, Dian-Ming Jiang
    Biomedicine & Pharmacotherapy.2022; 146: 112524.     CrossRef
  • Estrogen receptor alpha and NFATc1 bind to a bone mineral density-associated SNP to repress WNT5B in osteoblasts
    Sarocha Suthon, Jianjian Lin, Rachel S. Perkins, John R. Crockarell, Gustavo A. Miranda-Carboni, Susan A. Krum
    The American Journal of Human Genetics.2022; 109(1): 97.     CrossRef
  • Exposure of primary osteoblasts to combined magnetic and electric fields induced spatiotemporal endochondral ossification characteristic gene- and protein expression profiles
    Klaus H. Dittmann, Claus Mayer, Heribert Stephan, Christin Mieth, Michael Bonin, Beat Lechmann, H. Peter Rodemann
    Journal of Experimental Orthopaedics.2022;[Epub]     CrossRef
  • Roxadustat promotes osteoblast differentiation and prevents estrogen deficiency-induced bone loss by stabilizing HIF-1α and activating the Wnt/β-catenin signaling pathway
    Luyao Li, Afang Li, Li Zhu, Liangying Gan, Li Zuo
    Journal of Orthopaedic Surgery and Research.2022;[Epub]     CrossRef
  • T-cell factor 7L2 is a novel regulator of osteoblast functions that acts in part by modulation of hypoxia signaling
    Subburaman Mohan, Chandrasekhar Kesavan
    American Journal of Physiology-Endocrinology and Metabolism.2022; 322(6): E528.     CrossRef
  • Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications
    Ioannis Akoumianakis, Murray Polkinghorne, Charalambos Antoniades
    Nature Reviews Cardiology.2022; 19(12): 783.     CrossRef
  • Osteoporosis pathogenesis and treatment: existing and emerging avenues
    Bo Liang, George Burley, Shu Lin, Yan-Chuan Shi
    Cellular & Molecular Biology Letters.2022;[Epub]     CrossRef
  • QingreHuoxue decoction protects joint and toe bone morphology and structure in rats with active RA through bidirectional regulation of bone metabolism
    Hui Yang, Zhenyu Wu, Xun Gong, Bo Li, Guangjun Wu, Quan Jiang
    Pharmacological Research - Modern Chinese Medicine.2022; 4: 100156.     CrossRef
  • Regulation of Wnt signaling by non-coding RNAs during osteoblast differentiation
    I. Saranya, R.L. Akshaya, N. Selvamurugan
    Differentiation.2022; 128: 57.     CrossRef
  • Looking at Mountains: Role of Sustained Hypoxia in Regulating Bone Mineral Homeostasis in Relation to Wnt Pathway and Estrogen
    Lijy K. Babu, Dishari Ghosh
    Clinical Reviews in Bone and Mineral Metabolism.2022; 20(1-4): 18.     CrossRef
  • Effect of the Pulsed Electromagnetic Field Treatment in a Rat Model of Senile Osteoporosis In Vivo
    Jun Zhou, Jinling Wang, Mengjian Qu, Xiarong Huang, Linwei Yin, Yang Liao, Fujin Huang, Pengyun Ning, Peirui Zhong, Yahua Zeng
    Bioelectromagnetics.2022; 43(7): 438.     CrossRef
  • Arm race between Rift Valley fever virus and host
    Xiao Wang, Yupei Yuan, Yihan Liu, Leiliang Zhang
    Frontiers in Immunology.2022;[Epub]     CrossRef
  • Differential bone metabolism and protein expression in mice fed a high-fat diet versus Daurian ground squirrels following natural pre-hibernation fattening
    Xuli Gao, Shenyang Shen, Qiaohua Niu, Weilan Miao, Yuting Han, Ziwei Hao, Ning An, Yingyu Yang, Yu Zhang, Han Zhang, Kenneth B. Storey, Hui Chang
    Journal of Zhejiang University-SCIENCE B.2022; 23(12): 1042.     CrossRef
  • miR‐142a‐5p promoted osteoblast differentiation via targeting nuclear factor IA
    Hairui Yuan, Mengyue Li, Xue Feng, Endong Zhu, Baoli Wang
    Journal of Cellular Physiology.2021; 236(3): 1810.     CrossRef
  • Serum sclerostin and glucose homeostasis: No association in healthy men. Cross-sectional and prospective data from the EGIR-RISC study
    Jens-Jacob L. Lauterlein, Pernille Hermann, Thomas Konrad, Peter Wolf, Peter Nilsson, Rafael Gabriel Sánchez, Ele Ferrannini, Beverley Balkau, Kurt Højlund, Morten Frost
    Bone.2021; 143: 115681.     CrossRef
  • Energy Metabolism and Ketogenic Diets: What about the Skeletal Health? A Narrative Review and a Prospective Vision for Planning Clinical Trials on this Issue
    Daniela Merlotti, Roberta Cosso, Cristina Eller-Vainicher, Fabio Vescini, Iacopo Chiodini, Luigi Gennari, Alberto Falchetti
    International Journal of Molecular Sciences.2021; 22(1): 435.     CrossRef
  • Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms
    Jian Zhang, Hai Zhao, Gang Yao, Penghai Qiao, Longfei Li, Shuguang Wu
    Biomedicine & Pharmacotherapy.2021; 137: 111380.     CrossRef
  • Insertion of gallic acid onto chitosan promotes the differentiation of osteoblasts from murine bone marrow-derived mesenchymal stem cells
    Yunok Oh, Chang-Bum Ahn, M.P.C.K. Marasinghe, Jae-Young Je
    International Journal of Biological Macromolecules.2021; 183: 1410.     CrossRef
  • Biological Mechanisms of Paeonoside in the Differentiation of Pre-Osteoblasts and the Formation of Mineralized Nodules
    Kyung-Ran Park, Joon Yeop Lee, Myounglae Cho, Jin Tae Hong, Hyung-Mun Yun
    International Journal of Molecular Sciences.2021; 22(13): 6899.     CrossRef
  • Enamel matrix derivative (EMD) enhances the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs)
    Lu Cheng, Ying Li, Qian Xia, MaoHua Meng, ZhaoYang Ye, ZhengLong Tang, HongChao Feng, Xin Chen, HeLin Chen, Xiao Zeng, Yi Luo, Qiang Dong
    Bioengineered.2021; 12(1): 7033.     CrossRef
  • Synthesized Nanorods Hydroxyapatite by Microwave-Assisted Technology for In Vitro Osteoporotic Bone Regeneration through Wnt/β-Catenin Pathway
    Nadia Z. Shaban, Marwa Y. Kenawy, Nahla A. Taha, Mona M. Abd El-Latif, Doaa A. Ghareeb
    Materials.2021; 14(19): 5823.     CrossRef
  • Chlorogenic Acids Inhibit Adipogenesis: Implications of Wnt/β-Catenin Signaling Pathway
    Mengting Liu, Jian Qin, Jing Cong, Yubin Yang, Muhittin Yurekli
    International Journal of Endocrinology.2021; 2021: 1.     CrossRef
  • Regulation of the mesenchymal stem cell fate by interleukin-17: Implications in osteogenic differentiation
    Jelena Krstić, Slavko Mojsilović, Sonja S Mojsilović, Juan F Santibanez
    World Journal of Stem Cells.2021; 13(11): 1699.     CrossRef
  • Regulation of the mesenchymal stem cell fate by interleukin-17: Implications in osteogenic differentiation
    Jelena Krstić, Slavko Mojsilović, Sonja S Mojsilović, Juan F Santibanez
    World Journal of Stem Cells.2021; 13(11): 1696.     CrossRef
  • The Skeletal Cellular and Molecular Underpinning of the Murine Hindlimb Unloading Model
    Priyanka Garg, Maura Strigini, Laura Peurière, Laurence Vico, Donata Iandolo
    Frontiers in Physiology.2021;[Epub]     CrossRef
  • Changes in Serum Dickkopf-1, RANK Ligand, Osteoprotegerin, and Bone Mineral Density after Allogeneic Hematopoietic Stem Cell Transplantation Treatment
    Eunhee Jang, Jeonghoon Ha, Ki-Hyun Baek, Moo Il Kang
    Endocrinology and Metabolism.2021; 36(6): 1211.     CrossRef
  • Amyloid β peptide promotes bone formation by regulating Wnt/β‐catenin signaling and the OPG/RANKL/RANK system
    Bu Yang, Shangfu Li, Zheng Chen, Feng Feng, Lei He, Bin Liu, Tianwei He, Xuan Wang, Ruiqiang Chen, Zihao Chen, Peigen Xie, Limin Rong
    The FASEB Journal.2020; 34(3): 3583.     CrossRef
  • Evaluation of chondrogenesis and osteogenesis via Wnt/β-Catenin, S100 immunoexpression and histomorphometry in fetal rats following maternal uterine artery ligation
    Serap USLU, Gülperi ÖKTEM, Fatih OLTULU, Kenan DEMİR, Arzu İRBAN, Gülçin BAŞDEMİR, Ümit İNCE, Ayşegül UYSAL
    Ege Tıp Dergisi.2020; 59(1): 39.     CrossRef
  • Dual Effects of Lipid Metabolism on Osteoblast Function
    Nathalie S. Alekos, Megan C. Moorer, Ryan C. Riddle
    Frontiers in Endocrinology.2020;[Epub]     CrossRef
  • Mesenchymal stem cells: amazing remedies for bone and cartilage defects
    Parisa Kangari, Tahereh Talaei-Khozani, Iman Razeghian-Jahromi, Mahboobeh Razmkhah
    Stem Cell Research & Therapy.2020;[Epub]     CrossRef
  • Blue Mussel-Derived Peptides PIISVYWK and FSVVPSPK Trigger Wnt/β-Catenin Signaling-Mediated Osteogenesis in Human Bone Marrow Mesenchymal Stem Cells
    Yunok Oh, Chang-Bum Ahn, Jae-Young Je
    Marine Drugs.2020; 18(10): 510.     CrossRef
  • Interleukin-35 stimulates tumor necrosis factor-α activated osteoblasts differentiation through Wnt/β-catenin signaling pathway in rheumatoid arthritis
    Yuxuan Li, Lin Yuan, Shenyi Jiang, Siyan Liu, Liping Xia, Hui Shen, Jing Lu
    International Immunopharmacology.2019; 75: 105810.     CrossRef
  • The roles of Orai and Stim in bone health and disease
    Lisa J. Robinson, Harry C. Blair, John B. Barnett, Jonathan Soboloff
    Cell Calcium.2019; 81: 51.     CrossRef
Close layer

Endocrinol Metab : Endocrinology and Metabolism